Zero-Shot & Few-Shot Learning is an intermediate-level course designed for data scientists, ML engineers, and AI practitioners who want to build models that perform well—even when labeled data is limited. Traditional supervised learning breaks down when examples are scarce or tasks are constantly evolving. This course shows you how to solve that problem using cutting-edge zero-shot and few-shot learning techniques.



Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Prompt Engineering
- Catégorie : Unsupervised Learning
- Catégorie : Deep Learning
- Catégorie : Small Data
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Supervised Learning
- Catégorie : Machine Learning
- Catégorie : Semantic Web
- Catégorie : Natural Language Processing
- Catégorie : Fraud detection
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ In this introductory lesson, learners will explore the core principles of zero-shot and few-shot learning, including how they differ from traditional supervised learning. Through clear examples and intuitive analogies, learners will build a foundational understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.understanding of these approaches and why they matter in modern machine learning.
Inclus
3 vidéos3 lectures1 devoir1 plugin
In this lesson, learners will examine how pretrained models, semantic embeddings, and transfer learning enable generalization in low-data environments. They'll break down each component’s role through hands-on exercises and visualizations—gaining clarity on how models can recognize patterns or make predictions with minimal labeled data.
Inclus
4 vidéos2 lectures1 devoir1 plugin
In this lesson, learners will evaluate and apply zero-shot and few-shot strategies—such as prompt engineering, meta-learning, and prototypical networks—to real-world tasks. Through scenario-based activities and model comparisons, learners will learn how to choose and implement the right method based on data limitations and task requirements.
Inclus
4 vidéos1 lecture3 devoirs1 plugin
Instructeur

Offert par
En savoir plus sur Machine Learning
- Statut : Essai gratuit
University of Washington
- Statut : Gratuit
Coursera Project Network
- Statut : Essai gratuit
Edureka
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.