Introduction to Computer Vision guides learners through the essential algorithms and methods to help computers 'see' and interpret visual data. You will first learn the core concepts and techniques that have been traditionally used to analyze images. Then, you will learn modern deep learning methods, such as neural networks and specific models designed for image recognition, and how it can be used to perform more complex tasks like object detection and image segmentation. Additionally, you will learn the creation and impact of AI-generated images and videos, exploring the ethical considerations of such technology.



Introduction to Computer Vision
Ce cours fait partie de Spécialisation Computer Vision

Instructeur : Tom Yeh
2 146 déjà inscrits
Inclus avec
(11 avis)
Expérience recommandée
Ce que vous apprendrez
Understand the fundamental principles and algorithms of classical computer vision.
Apply deep learning models to various computer vision tasks.
Evaluate and implement computer vision solutions for real-world applications.
Compétences que vous acquerrez
- Catégorie : Probability Distribution
- Catégorie : Computer Graphics
- Catégorie : Generative AI
- Catégorie : Computer Vision
- Catégorie : Computational Thinking
- Catégorie : Applied Machine Learning
- Catégorie : Data Transformation
- Catégorie : Image Analysis
- Catégorie : Data Ethics
- Catégorie : Deep Learning
- Catégorie : Linear Algebra
Détails à connaître

Ajouter à votre profil LinkedIn
22 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
Welcome to Introduction to Computer Vision, the first course in the Computer Vision specialization. In this first module, you'll be introduced to how this course operates "by Hand" and "in Excel." Then, you'll build a foundation in image matrices and arrays to explore different image types: binary, grayscale, and RGB. Next, you'll transition into using functions to perform basic image operations such as addition, negation, and masking. You'll then be introduced to the concept of image transformation through linear algebra. Finally, you'll perform translation, scaling, and rotation matrix operations.
Inclus
34 vidéos6 lectures7 devoirs
This module dives into feature extraction—quantitative measures that describe image content. Students compute features such as image mass, center, and statistical moments to describe the shape and structure of images. These are implemented both manually and in Excel. The module also explores how to compare images using distance metrics and similarity measures, offering insight into how visual data can be analyzed, categorized, and classified.
Inclus
23 vidéos2 lectures5 devoirs
Filtering techniques are central to detecting patterns in images. This module introduces learners to 1D and 2D filters, covering foundational concepts like convolution, cross-correlation, and Gaussian smoothing. Through both manual and spreadsheet-based exercises, learners apply various filters (e.g., mean, Laplacian, Sobel) and morphological operations like dilation and erosion. These filtering methods enhance image features, detect edges, and prepare data for further processing.
Inclus
26 vidéos2 lectures5 devoirs
This module delves into key concepts of camera models and their role in computer vision and photogrammetry. You will learn about the Extrinsic Matrix, exploring how it defines the position and orientation of a camera in 3D space. Understand the Pinhole Camera Model, a simplified optical system that forms the basis for many computer vision applications, alongside the Intrinsic Matrix, which captures the internal parameters of the camera. Epipolar geometry is examined, with a focus on its significance in 3D reconstruction and stereo vision. The module covers the motivation behind epipolar geometry, breaking down its basic components, and explaining the Essential Matrix, which encapsulates the geometric relationship between camera views, as well as the Fundamental Matrix, a core component in epipolar geometry that represents the relationship between two cameras in stereo vision.
Inclus
15 vidéos2 lectures5 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Instructeur

Offert par
En savoir plus sur Algorithms
- Statut : Prévisualisation
University of Colorado Boulder
- Statut : Essai gratuit
MathWorks
University of Colorado Boulder
- Statut : Essai gratuit
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,