Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues. Consultez les langues disponibles.
University of Colorado Boulder

Introduction to Computer Vision

Ce cours fait partie de Spécialisation Computer Vision

Tom Yeh

Instructeur : Tom Yeh

2 146 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.3

(11 avis)

niveau Débutant

Expérience recommandée

Planning flexible
2 semaines à 10 heures une semaine
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.3

(11 avis)

niveau Débutant

Expérience recommandée

Planning flexible
2 semaines à 10 heures une semaine
Apprenez à votre propre rythme
Préparer un diplôme

Ce que vous apprendrez

  • Understand the fundamental principles and algorithms of classical computer vision.

  • Apply deep learning models to various computer vision tasks.

  • Evaluate and implement computer vision solutions for real-world applications.

Compétences que vous acquerrez

  • Catégorie : Probability Distribution
  • Catégorie : Computer Graphics
  • Catégorie : Generative AI
  • Catégorie : Computer Vision
  • Catégorie : Computational Thinking
  • Catégorie : Applied Machine Learning
  • Catégorie : Data Transformation
  • Catégorie : Image Analysis
  • Catégorie : Data Ethics
  • Catégorie : Deep Learning
  • Catégorie : Linear Algebra

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

22 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Computer Vision
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours

Welcome to Introduction to Computer Vision, the first course in the Computer Vision specialization. In this first module, you'll be introduced to how this course operates "by Hand" and "in Excel." Then, you'll build a foundation in image matrices and arrays to explore different image types: binary, grayscale, and RGB. Next, you'll transition into using functions to perform basic image operations such as addition, negation, and masking. You'll then be introduced to the concept of image transformation through linear algebra. Finally, you'll perform translation, scaling, and rotation matrix operations.

Inclus

34 vidéos6 lectures7 devoirs

This module dives into feature extraction—quantitative measures that describe image content. Students compute features such as image mass, center, and statistical moments to describe the shape and structure of images. These are implemented both manually and in Excel. The module also explores how to compare images using distance metrics and similarity measures, offering insight into how visual data can be analyzed, categorized, and classified.

Inclus

23 vidéos2 lectures5 devoirs

Filtering techniques are central to detecting patterns in images. This module introduces learners to 1D and 2D filters, covering foundational concepts like convolution, cross-correlation, and Gaussian smoothing. Through both manual and spreadsheet-based exercises, learners apply various filters (e.g., mean, Laplacian, Sobel) and morphological operations like dilation and erosion. These filtering methods enhance image features, detect edges, and prepare data for further processing.

Inclus

26 vidéos2 lectures5 devoirs

This module delves into key concepts of camera models and their role in computer vision and photogrammetry. You will learn about the Extrinsic Matrix, exploring how it defines the position and orientation of a camera in 3D space. Understand the Pinhole Camera Model, a simplified optical system that forms the basis for many computer vision applications, alongside the Intrinsic Matrix, which captures the internal parameters of the camera. Epipolar geometry is examined, with a focus on its significance in 3D reconstruction and stereo vision. The module covers the motivation behind epipolar geometry, breaking down its basic components, and explaining the Essential Matrix, which encapsulates the geometric relationship between camera views, as well as the Fundamental Matrix, a core component in epipolar geometry that represents the relationship between two cameras in stereo vision.

Inclus

15 vidéos2 lectures5 devoirs

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

 

Instructeur

Tom Yeh
University of Colorado Boulder
4 Cours11 307 apprenants

Offert par

En savoir plus sur Algorithms

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions