This hands-on course equips learners with the foundational knowledge and practical skills required to build and evaluate supervised machine learning models using Python. Designed around the real-world Titanic dataset, the course walks learners through the complete machine learning pipeline—from project setup and lifecycle understanding to model deployment readiness.



Python: Logistic Regression & Supervised ML
Dieser Kurs ist Teil von Spezialisierung für Python for Data Science: Real Projects & Analytics

Dozent: EDUCBA
Bei enthalten
Kompetenzen, die Sie erwerben
- Kategorie: Exploratory Data Analysis
- Kategorie: Data Manipulation
- Kategorie: Supervised Learning
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Machine Learning Algorithms
- Kategorie: Pandas (Python Package)
- Kategorie: Applied Machine Learning
- Kategorie: Classification And Regression Tree (CART)
- Kategorie: Decision Tree Learning
- Kategorie: Predictive Modeling
- Kategorie: Data Analysis
- Kategorie: Feature Engineering
- Kategorie: NumPy
- Kategorie: Statistical Modeling
- Kategorie: Data Cleansing
- Kategorie: Machine Learning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 2 Module
This module introduces learners to the foundational concepts and workflows involved in building supervised machine learning models using Python. It covers the real-world context of a data science project using the Titanic dataset, including the project lifecycle, problem definition, essential Python libraries for data analysis, and an overview of key algorithms such as Decision Trees and Logistic Regression. Through hands-on exposure, learners gain the practical knowledge required to begin implementing classification models and understand how to prepare and structure their machine learning pipeline.
Das ist alles enthalten
6 Videos3 Aufgaben
This module focuses on the practical steps involved in preparing data for supervised machine learning models. Learners will explore the process of conducting Exploratory Data Analysis (EDA), managing datasets, performing feature engineering, and visualizing insights using Python libraries such as pandas and seaborn. It further guides learners through the model building process, including dataset splitting, performance evaluation using confusion matrices, and applying cross-validation techniques to enhance model reliability.
Das ist alles enthalten
8 Videos3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
Coursera Project Network
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenloser Testzeitraum
University of Pennsylvania
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,