Finding stories in data using exploratory data analysis (EDA) is all about organizing and interpreting raw data. Python can help you do this quickly and effectively. In this course, you’ll learn how to use Python to perform the EDA practices of discovering and structuring.



Rohdaten erforschen
Dieser Kurs ist Teil von Spezialisierung für Google Datenanalyse mit Python

Dozent: Google Career Certificates
TOP-LEHRKRAFT
Bei enthalten
Was Sie lernen werden
Identify ethical issues that may come up during the data “discovering” practice of EDA
Using the PACE workflow to understand whether given data is adequate and applicable to a data science project
Recognize when and how to communicate status updates and questions to key stakeholders
Kompetenzen, die Sie erwerben
- Kategorie: Datenüberprüfung
- Kategorie: Unstrukturierte Daten
- Kategorie: Datenstrukturen
- Kategorie: Datenumwandlung
- Kategorie: JSON
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
Data professionals must understand data sources, file formats, and responsible parties during exploratory analysis. In this module, you will learn when to contact data owners for questions or issues, how to import data using Python and perform EDA using basic functions in Python.
Das ist alles enthalten
5 Videos3 Lektüren1 Aufgabe3 Unbewertete Labore
EDA discovery uses targeted questioning to identify data gaps and missing information. In this module, you will learn how to formulate hypotheses, manipulate datetime strings and create bar graph visualizations.
Das ist alles enthalten
2 Videos1 Lektüre1 Aufgabe1 Unbewertetes Labor
Structuring is an EDA practice for organizing data to learn more about it. In this module, you will learn different types of structuring methods, pandas tools for structuring datasets, and interpret histograms to understand data distributions.
Das ist alles enthalten
2 Videos2 Lektüren1 Aufgabe3 Unbewertete Labore1 Plug-in
Review everything you’ve learned and take the final assessment.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Datenanalyse entdecken
- Status: Kostenloser Testzeitraum
American Psychological Association
Coursera Project Network
- Status: Kostenloser Testzeitraum
University of Pennsylvania
- Status: Kostenloser Testzeitraum
CertNexus
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
Ein Datenexperte ist ein Begriff, der jede Person beschreibt, die mit Daten arbeitet und/oder über Datenkenntnisse verfügt. Ein Datenexperte ist zumindest in der Lage, Daten zu erkunden, zu bereinigen, auszuwählen, zu analysieren und zu visualisieren. Sie können auch gut mit dem Schreiben von Code umgehen und sind mit den Techniken vertraut, die von Statistikern und Ingenieuren für maschinelles Lernen verwendet werden, einschließlich der Erstellung von Modellen, der Entwicklung algorithmischen Denkens und der Erstellung von Modellen für maschinelles Lernen.
Datenexperten sind für das Sammeln, Analysieren und Interpretieren großer Datenmengen in einer Vielzahl unterschiedlicher Organisationen verantwortlich. Die Rolle eines Datenexperten wird von Unternehmen zu Unternehmen unterschiedlich definiert. Im Allgemeinen verfügen Datenexperten über technische und strategische Fähigkeiten, die fortgeschrittene analytische Fähigkeiten wie Datenmanipulation, Versuchsplanung, prädiktive Modellierung und maschinelles Lernen erfordern. Sie führen eine Vielzahl von Aufgaben im Zusammenhang mit dem Sammeln, Strukturieren, Interpretieren, Überwachen und Berichten von Daten in zugänglichen Formaten aus, damit die Beteiligten die Daten verstehen und effektiv nutzen können. Letztlich hilft die Arbeit von Datenexperten Organisationen, fundierte, ethische Entscheidungen zu treffen.
Große Datenmengen - und die zur Verwaltung und Analyse dieser Daten erforderliche Technologie - werden immer leichter zugänglich. Aus diesem Grund gibt es immer mehr Karrieremöglichkeiten für Menschen, die mithilfe von Daten Geschichten erzählen können, wie z. B. leitende Fachkräfte für Datenanalyse und Data Scientists. Diese Fachleute sammeln, analysieren und interpretieren große Datenmengen in einer Vielzahl unterschiedlicher Organisationen. Ihre Aufgaben erfordern fortgeschrittene analytische Fähigkeiten wie Datenmanipulation, Versuchsplanung, Prognosemodellierung und maschinelles Lernen.
Weitere Fragen
Finanzielle Unterstützung verfügbar,