In this course, you’ll explore data structures in Python, which are methods of storing and organizing data in a computer. You’ll focus on data structures that are among the most useful for data professionals: lists, tuples, dictionaries, sets, and arrays. You’ll also discover how to categorize data using data loading, cleaning, and binning. Lastly, you’ll learn about two of the most widely used and important Python tools for advanced data analysis: NumPy and pandas.



Datenstrukturen in Python
Dieser Kurs ist Teil von Spezialisierung für Google Datenanalyse mit Python

Dozent: Google Career Certificates
TOP-LEHRKRAFT
Bei enthalten
Was Sie lernen werden
Use core NumPy and pandas data structures to store and organize data
Define Python tools such as libraries, packages, modules, and global variables
Describe the main features and methods of built-in Python data structures such as lists, tuples, dictionaries, and sets
Kompetenzen, die Sie erwerben
- Kategorie: Daten importieren/exportieren
- Kategorie: Datenwrangling
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 5 Module
In this module, you will explore data structures in Python, which are methods of storing and organizing data in a computer. You’ll focus on lists and tuples, data structures that are among the most useful for data professionals.
Das ist alles enthalten
5 Videos3 Lektüren1 Aufgabe3 Unbewertete Labore
In this module, you will focus on dictionaries and sets, some more data structures that are among the most useful for data professionals.
Das ist alles enthalten
3 Videos2 Lektüren1 Aufgabe2 Unbewertete Labore
In this module, you will focus on arrays. You’ll learn about one of the most widely used and important Python tools for advanced data analysis: NumPy.
Das ist alles enthalten
3 Videos3 Lektüren1 Aufgabe2 Unbewertete Labore
In this module, you will learn about one of the most widely used and important Python tools for advanced data analysis: pandas. You’ll also discover how to categorize data using data loading, cleaning, and binning.
Das ist alles enthalten
5 Videos3 Lektüren1 Aufgabe2 Unbewertete Labore
Überprüfen Sie alles, was Sie gelernt haben, und nehmen Sie an der Abschlussprüfung teil.
Das ist alles enthalten
1 Lektüre1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Datenanalyse entdecken
- Status: Kostenloser Testzeitraum
University of Michigan
Coursera Project Network
Coursera Project Network
- Status: Kostenloser Testzeitraum
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Unternehmen jeder Art und Größe haben Geschäftsprozesse, bei denen riesige Datenmengen anfallen. Jeden Moment werden alle Arten von Informationen von Computern, dem Internet, Telefonen, Texten, Streaming-Videos, Fotos, Sensoren und vielem mehr erzeugt. In der globalen digitalen Landschaft sind die Daten zunehmend unpräzise, chaotisch und unstrukturiert. Da die Geschwindigkeit und Vielfalt der Daten exponentiell zunimmt, haben Unternehmen Schwierigkeiten, damit Schritt zu halten.
Die Datenwissenschaft ist ein Teilbereich der Wissenschaft, der Rohdaten nutzt, um neue Wege der Modellierung und des Verständnisses von Unbekanntem zu schaffen. Um Erkenntnisse zu gewinnen, sind Unternehmen auf Datenexperten angewiesen, die Daten erfassen, organisieren und interpretieren, um sie für interne Projekte und Prozesse zu nutzen. Datenwissenschaftler stützen sich auf eine Kombination von wichtigen Fähigkeiten, darunter Statistik, wissenschaftliche Methoden, Datenanalyse und künstliche Intelligenz.
Ein Datenexperte ist ein Begriff, der jede Person beschreibt, die mit Daten arbeitet und/oder über Datenkenntnisse verfügt. Ein Datenexperte ist zumindest in der Lage, Daten zu erkunden, zu bereinigen, auszuwählen, zu analysieren und zu visualisieren. Sie können auch gut mit dem Schreiben von Code umgehen und sind mit den Techniken vertraut, die von Statistikern und Ingenieuren für maschinelles Lernen verwendet werden, einschließlich der Erstellung von Modellen, der Entwicklung algorithmischen Denkens und der Erstellung von Modellen für maschinelles Lernen.
Datenexperten sind für das Sammeln, Analysieren und Interpretieren großer Datenmengen in einer Vielzahl unterschiedlicher Organisationen verantwortlich. Die Rolle eines Datenexperten wird von Unternehmen zu Unternehmen unterschiedlich definiert. Im Allgemeinen verfügen Datenexperten über technische und strategische Fähigkeiten, die fortgeschrittene analytische Fähigkeiten wie Datenmanipulation, Versuchsplanung, prädiktive Modellierung und maschinelles Lernen erfordern. Sie führen eine Vielzahl von Aufgaben im Zusammenhang mit dem Sammeln, Strukturieren, Interpretieren, Überwachen und Berichten von Daten in zugänglichen Formaten aus, damit die Beteiligten die Daten verstehen und effektiv nutzen können. Letztlich hilft die Arbeit von Datenexperten Organisationen, fundierte, ethische Entscheidungen zu treffen.
Große Datenmengen - und die zur Verwaltung und Analyse dieser Daten erforderliche Technologie - werden immer leichter zugänglich. Aus diesem Grund gibt es immer mehr Karrieremöglichkeiten für Menschen, die mithilfe von Daten Geschichten erzählen können, wie z. B. leitende Fachkräfte für Datenanalyse und Data Scientists. Diese Fachleute sammeln, analysieren und interpretieren große Datenmengen in einer Vielzahl unterschiedlicher Organisationen. Ihre Aufgaben erfordern fortgeschrittene analytische Fähigkeiten wie Datenmanipulation, Versuchsplanung, Prognosemodellierung und maschinelles Lernen.
Weitere Fragen
Finanzielle Unterstützung verfügbar,